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Simulations of the two-dimensional self-avoiding walk (SAW) are performed in
a half-plane and a cut-plane (the complex plane with the positive real axis
removed) using the pivot algorithm. We test the conjecture of Lawler,
Schramm, and Werner that the scaling limit of the two-dimensional SAW is
given by Schramm’s stochastic Loewner evolution (SLE). The agreement is
found to be excellent. The simulations also test the conformal invariance of the
SAW since conformal invariance implies that if we map infinite length walks in
the cut-plane into the half plane using the conformal map z Q `z, then the
resulting walks will have the same distribution as the SAW in the half plane.
The simulations show excellent agreement between the distributions.
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1. INTRODUCTION

Lawler, Schramm, and Werner (7) have conjectured that the scaling limit of
the two-dimensional self-avoiding walk (SAW) is given by Schramm’s (11)

stochastic Loewner evolution (SLE). SLE is a two dimensional confor-
mally invariant random process which depends on a parameter o, and so is
denoted SLEo. Chordal SLE refers to the version of SLE in which the
random curve or set connects two points on the boundary of a simply
connected domain. It is usually defined first for the case where the domain
is the half-plane and the two boundary points are 0 and .. Its definition is
then extended to other simply connected domains D and boundary points



using a conformal map from the half-plane to D which maps the two
boundary points appropriately. If o < 4, chordal SLE gives a probability
measure on simple curves, i.e., curves that do not intersect themselves. (10)

The conjecture of Lawler, Schramm, and Werner is that for any simply
connected domain D and points z and w on its boundary, chordal SLE8/3 is
the scaling limit of SAW’s that go from z to w and stay inside D.

For o=8/3, Lawler, Schramm, and Werner (8) have a theorem that
makes it possible to explicitly compute the distributions of many random
variables associated with the SLE random curve. For the scaling limit of
the SAW, these random variables can be studied by simulation. Thus one
can numerically test their conjecture that the scaling limit of the SAW is
SLE8/3 by comparing the distributions from simulations of the SAW with
the exact distributions for SLE8/3. This test was carried out for two such
random variables for the SAW in the upper half-plane in ref. 2, and
excellent agreement was found. In this paper we consider more random
variables for which the exact distribution can be computed for SLE8/3. We
compare their exact distributions with the numerical distributions of the
same random variables for the SAW in the half-plane. We also simulate the
SAW in the cut-plane consisting of the complex plane minus the non-nega-
tive real axis. The map z Q `z takes the cut-plane onto the half-plane, and
by composing the random variables for the half-plane with this map we
obtain corresponding random variables for the cut-plane. We compare
their distributions for the SAW from our simulations for the cut-plane with
the exact distributions for SLE8/3. We also consider the probability that the
walk passes to the right of a given point in the half-plane (or the cut-plane)
and compare this probability for the SAW simulations with an exact
formula of Schramm (12) for SLE. In all our simulations we use a square
lattice. Other lattices, e.g., triangular or hexagonal, should have the same
scaling limit, but we have not done any simulations to test this.

We consider a variety of random variables which have the advantage
that their distribution for SLE8/3 may be explicitly computed. We test the
conjecture by comparing these explicit distributions with the distributions
obtained by simulating the self-avoiding walk. For both of the domains we
consider, the terminal point of the walk is at infinity. In such cases it is
expected that we can construct the scaling limit by considering all SAW
walks with a fixed length N which start at the origin, taking the limit
N Q . and then taking the limit that the lattice spacing goes to zero. We
simulate walks with a fixed number of steps with the pivot algorithm,
a Markov chain Monte Carlo algorithm. In the appendix we show that the
Markov chain in this algorithm is irreducible for the half and cut planes. It
trivially satisfies detailed balance with respect to the uniform probability
measure, so by a standard theorem of Markov chains the distributions for

52 Kennedy



the random variables that one obtains by running the simulation will con-
verge to their distributions under the desired uniform measure on self-
avoiding walks. The simulations are of course only run for a finite amount
of time. We will refer to the error resulting from only running the simula-
tion a finite amount of time as ‘‘statistical error.’’ These statistical errors
can be estimated and are shown in our plots with error bars that give two
standard deviations. Besides these statistical errors there are two other
sources of error. We must take the length of the walk to infinity and then
we must take the lattice spacing to zero. We will pay particular attention to
these two sources of error when we discuss the results of the simulation.
We will see that the differences we find between the self-avoiding walk
simulations and the SLE8/3 explicit distributions are small and consistent
with these three sources of error. We conclude that our simulations support
the conjecture that the scaling limit of the self-avoiding walk is SLE8/3.

For a domain D and two finite points z and w on its boundary, the
scaling limit should be constructed as follows. We introduce a lattice and
consider all self-avoiding walks which start at z and end at w. ( The number
of steps in the walks is not fixed.) The probability of such a walk is taken
to be proportional to b−N where N is the number of steps in the walk, and
b is the constant such that the number of SAW’s in the plane starting at
the origin grows with the number of steps, N, as bN. ( The value of the
connectivity constant b depends on the particular lattice. Our simulations
are only for cases with the terminal point at infinity, so the value of b does
not enter into our simulations.) The measure is normalized so that it is a
probability measure. We then take the limit of this measure as the lattice
spacing goes to zero. The construction of the scaling limit in the case of
SAW’s with infinite terminal point is rather different from the case of a
finite terminal point, so it would be interesting to test the conjecture that
the scaling limit is given by SLE8/3 in the case of a finite terminal point.

In addition to describing the scaling limit of the SAW, SLE is
conjectured to describe the scaling limit of a large number of other two
dimensional models. Many of these conjectures have been proved recently.
Schramm showed that if the loop-erased random walk has a conformally
invariant scaling limit, then that limit must be SLE2. (11) He also conjectured
that the scaling limit of percolation should be related to SLE6, and the
scaling limit of uniform spanning trees (UST) is described by SLE2 and
SLE8. The conjectures for the loop-erased random walk and the UST
have been proved by Lawler, Schramm, and Werner (6) Smirnov has proved
the conformal invariance conjecture for critical percolation on the trian-
gular lattice and that SLE6 describes the limit. (13) Lawler, Schramm, and
Werner used SLE6 to rigorously determine the intersection exponents for
Brownian motion and proved a conjecture of Mandelbrot that the outer
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boundary of a Brownian path has Hausdorff dimension 4/3. (3–5) The
random cluster representation of the Potts model for 0 < q < 4 was
conjectured by Rohde and Schramm to be related to the SLE process as
well. (10)

In Section 2 we define the random variables that we will use to test the
conjecture, and work out their distributions for SLE8/3 using a theorem of
Lawler, Schramm, and Werner. In Section 3 we describe the results of the
simulations. Some details about how the simulations were done are given in
Section 4. Appendix A gives a proof that the pivot algorithm is irreducible
in the half and cut planes.

2. SLE PREDICTIONS

The random variables we consider are defined for curves in the upper
half-plane as follows. Note that these random variables are defined both
for the SAW and for SLE. We use c to denote the random curve in both
cases. Consider a horizontal line at a height of c above the horizontal axis.
The curve c will intersect it, possibly more than once, and we look for the
left-most intersection. The random variable Xe is the x-coordinate of this
intersection, divided by c. So

Xe=
1
c

min{x: x+ic ¥ c} (1)

We can also consider the first intersection of the curve with the horizontal
line. (‘‘First’’ means the first intersection as we traverse the curve starting
at the origin.) We let Xf be the x-coordinate of this intersection, divided
by c. ( The subscripts e and f are for ‘‘extreme’’ and ‘‘first,’’ respectively.)
The next random variable is defined using a vertical line at a distance c to
the right of the origin. The curve will intersect it, and we look for the
lowest intersection. The random variable Ye is the y-coordinate of this
intersection, divided by c. So

Ye=
1
c

min{y: c+iy ¥ c} (2)

The random variable Yf is the y-coordinate of the first intersection, divided
by c. For the final random variable, consider a semi-circle of radius c
centered at the the point cd on the real axis where |d | < 1. So the origin
where the random curve starts is inside the semicircle. The intersections of
the random curve with the semicircle are of the form c(d+e ih) and we look
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for the intersection with the smallest h. The random variable Ge is this
smallest angle, normalized so that it ranges between 0 and 1. So

Ge=
1
p

min{h: c(d+e ih) ¥ c} (3)

The random variable Gf is the angle of the first intersection, again nor-
malized so that it ranges from 0 to 1. If the probability measure is invariant
under dilations, then the distributions of all of these random variables are
independent of c. This is true for SLE and is expected to be true for the
scaling limit of the SAW.

The distributions of Xe, Ye, Ge are all easily computed using the
following theorem of Lawler, Schramm, and Werner. Let H be the upper
half-plane. Let A be a compact subset of the closure of H such that H0A is
simply connected and 0 is not in A. Let FA be the conformal map from
H0A onto H which fixes 0 and . and has F −

A(.)=1. We continue to
denote the random curve generated by SLE, the SLE ‘‘trace,’’ by c.

Theorem 1 (Lawler, Schramm, and Werner (8)). For o=8/3,
chordal SLE in the half plane has

P(c 5 A=”)=F −

A(0)5/8 (4)

Our next step is to use this theorem to compute the distributions of
Xe, Ye, and Ge.

2.1. Hitting the Horizontal Line

It is convenient to take c=p to compute the distribution of Xe. Let Lt

be the horizontal ray which starts at t+pi and goes to the left. Let FLt
(z)

be the conformal map which maps H0Lt onto H and satisfies the condi-
tions in the theorem. Note that Xe [ t/p if and only if c hits Lt. So by the
theorem

P(Xe [ t/p)=1 − F −

Lt
(0) (5)

The map w(z)=z+ln(z)+1+t maps H onto H0Lt. We need the inverse
of this map but it cannot be explicitly found. The inverse should be nor-
malized so that it fixes 0 and . and has derivative 1 at .. The above map
does not fix 0, but meets the other two conditions. Fixing 0 is not necessary

Conformal Invariance and SLE Predictions for the 2D SAW 55



since we can achieve this condition by just adding a constant to the inverse
map, and this which will not change its derivative. So we have

F −

Lt
(0)=

dz
dw

(0)=1dw
dz

(z0)2
−1

(6)

where z0 is the image of 0 under the inverse map, i.e., 0=z0+ln(z0)+1+t.
Define

g(x)=x+ln(x) (7)

This is an increasing function which maps (0, .) onto the real line, so it
has an inverse that maps the real line to (0, .). Note that z0=g−1(−t − 1).
We have

dw
dz

(z0)=1+
1

g−1(−t − 1)
(8)

So (5) and a trivial change of variables gives

P(Xe [ t)=1 −1 g−1(−pt − 1)
g−1(−pt − 1)+1

25/8

(9)

Although g−1 cannot be explicitly computed, it can be trivially computed
numerically. The graph of the above distribution is the solid line in Fig. 1.
The open circles in the figure are the results of the simulation for the SAW.

We can find the asymptotic behavior of the distribution in (9) as t goes
to ± .. For large positive t, g(t)=t+ln(t) % t. So as t Q− ., g−1(−pt − 1)
% − pt, and so

P(Xe [ t) % 1 −1 − pt
− pt+1

25/8

% −
5

8pt
, as t Q− . (10)

As t Q 0, g(t) % ln(t). So as t Q ., g−1(−pt − 1) % e−pt − 1. So

P(Xe [ t) % 1 −1 e−pt − 1

e−pt − 1+1
25/8

% 1 − e−5(pt+1)/8, as t Q . (11)

As t Q− ., the probability goes to zero slowly, but as t Q ., the proba-
bility goes to one exponentially fast. This is reasonable since when Xe is
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Fig. 1. The distribution, P(Xe [ t), of Xe for the half-plane. The solid line is the distribution
for SLE8/3, and the open circles are the results of the simulation of the SAW.

very negative it only means there is at least one intersection with the
horizontal line far to the left of the origin, but when Xe is very positive it
means that all intersections with the horizontal line are far to the right of
the origin.

2.2. Hitting the Vertical Line

The distribution of Ye was studied in ref. 2. We take At to be the line
segment from 1 to 1+it. The conformal map that maps H0At onto H with
the required normalizations is

FAt
(z)=i ` − (z − 1)2 − t2 (12)

where the square root has its branch cut along the negative real axis. Thus
the distribution of Ye is

P(Ye [ t)=P(c[0, .) 5 At ] ”)=1 − F −

At
(0)5/8=1 − (1+t2)−5/16 (13)

Figure 2 shows this distribution and the results of the simulation for the
SAW.
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Fig. 2. The distribution of Ye for the half-plane. The solid line is SLE8/3, and the open
circles are the SAW.

2.3. Hitting the Circle

It is convenient to translate so the semicircle is centered at the origin.
Setting c=1, this means the random curves start at − d. So P(Ge [ t)=
1 − F −(−d)5/8, where F is a conformal map which takes the half-plane
minus the arc Af={e ih: 0 [ h [ pt} onto the half-plane with the nor-
malizations that the map fixes . and has derivative 1 at .. (As in the
previous case, we ignore the condition that the map fixes the origin since it
does not affect the derivative.)

The conformal map

z Q
z − 1
z+1

(14)

sends the upper half-plane (including .) onto itself, and it sends the upper
half of the unit circle to the upper half of the imaginary axis. Let

a=
sin(pt)

1+cos(pt)
(15)

Then the arc At is mapped onto the line segment from 0 to ia. We can then
map H with this line segment removed onto H as we did in the previous
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section. Composing these two maps and multiplying by a factor of `1+a2

for later convenience, we define

k(z)=i `1+a2 5−
(z − 1)2

(z+1)2 − a261/2

(16)

with the branch cut for the square root being the negative real axis. The
map k sends H0At onto H.

The map k does not send . to itself. For z near .,

k(z)=(1+a2)11 −
2

(1+a2) z
+ · · · 2 (17)

In particular, k(.)=(1+a2). Now let

FAt
(z)=

2
1+a2 − k(z)

(18)

For large z, FAt
(z) % z, so the derivative at . is 1 as required.

For real x with − 1 < x < 1, the choice of branch cut leads to

k(x)=−`1+a2 5(x − 1)2

(x+1)2+a26 (19)

Define

s=(1+a2)−1=
1+cos(pt)

2
(20)

This will prove to be a natural variable to use. We have

k(x)=−
1

`s
5(x − 1)2

(x+1)2+
1
s

− 16
1/2

=−
1
s
51 −

4xs
(x+1)2

61/2

(21)

so

F(x)=
2

1
s − k(x)

=
2s

1+[1 − 4xs
(x+1)2 ]

1/2 (22)

Computing the derivative F −(−d) then yields

P(Ge [ t)=1 −1 4s2(1+d)
(1 − d+[(1 − d)2+4ds]1/2)2 ((1 − d)2+4ds)1/2

2a

(23)
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Fig. 3. The distribution of Ge for the half-plane for d=0, 0.5, 0.9. (d increases from left to
right.) The solid lines are SLE8/3, and the open circles are the SAW.

For d=0, 0.5, and 0.9, this distribution and the results of the simulation
for the SAW are shown in Fig. 3.

2.4. Passing Right

In addition to the distributions of the random variables Xe, Ye, and Ge,
we also consider the following probability. Fix a point in the upper half-
plane. One can then ask if the random curve passes to the right or left of
this point. For SLE this probability only depends on the polar angle of the
point since SLE is invariant under dilations. This should also be true for
the scaling limit of the SAW, since it is expected to be invariant under
dilations. Schramm (12) rigorously derived an explicit formula for this
probability for o < 8. For general o it is given by a hypergeometric func-
tion, but for o=8/3, his formula is quite simple. Denoting the probability
that the curve passes to the right of a point with polar angle h by p(h), he
showed that for o=8/3

p(h)=1
2 (1 − cos(h)) (24)

In our simulations we study this probability by fixing a radius c and com-
puting the probability the path passes to the right of ce ih for a large set of
values of h. The above function and the results of the SAW simulation are
shown in Fig. 4. (Note that the horizontal axis in the figure is h/p.)
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Fig. 4. The probability that the walk passes to the right of a point as function of its polar
angle for walks in the half-plane. The horizontal axis is the angle divided by p, so that it
ranges from 0 to 1. The solid line is the exact result for SLE8/3, and the open circles are the
results of the simulation of the SAW.

2.5. The Cut-Plane

The cut-plane we consider is the plane with the non-negative real axis
removed. Let f(z)=`z, with the branch cut along the positive real axis.
Then f maps the cut-plane onto the upper half-plane. We will continue to
denote curves in the upper half-plane by c, and use ĉ to denote curves in
the cut-plane. Given a curve ĉ in the cut-plane, c=f p ĉ is a curve in the
upper half-plane. So we can define the various random variables for the cut-
plane by applying their definitions in the half-plane to f p ĉ. We will put
a 5 on top of random variables defined on curves in the cut-plane. For the
simulations it is useful to work out these definitions explicitly in terms of
the curve ĉ in the cut-plane, rather than map each SAW in the cut-plane to
the half-plane.

First consider Ĝe and Ĝf for d=0. The map f simply divides the
polar angle by 2, so for curves ĉ in the cut-plane,

Ĝe=
1

2p
min{h: ce ih ¥ ĉ} (25)
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The random variable Ĝf is the polar angle of the first intersection of ĉ with
the circle, divided by 2p. If d ] 0, the image of the semicircle under z Q z2

is not a circle. We have not simulated Ĝe or Ĝf in this case.
To find the definition of X̂e, we first take c=1. The image of the

horizontal line {i+t : − . < t < .} under z Q z2 is a parabola whose axis is
the horizontal axis and which opens to the right,

x=t2 − 1, y=2t (26)

In the half-plane, Xe is the smallest t such that i+t is on the curve. In the
cut-plane, we consider all intersections of ĉ with the parabola and find the
intersection with the smallest y-coordinate. Since t=y/2, X̂e is one half of
the y-coordinate of this ‘‘lowest’’ intersection. Equivalently,

X̂e=min{t: (t2 − 1, 2t) ¥ ĉ} (27)

SLE is invariant under dilations of the cut-plane, and the scaling limit of
the SAW in the cut-plane is expected to have this invariance as well. So for
c ] 1 we can take the parabola to be

x=c(t2 − 1), y=2ct (28)

and let

X̂e=min{t: (c(t2 − 1), 2ct) ¥ ĉ} (29)

X̂f is the y-coordinate of the first intersection of ĉ with the parabola
divided by 2c.

To find the definition of Ŷe, we consider the image of {1+it :
0 < t < .} under z Q z2. It is the upper half of a parabola whose axis is the
horizontal axis and which opens to the left:

x=1 − t2, y=2t, t > 0 (30)

In the half-plane, Ye is the smallest t such that 1+it ¥ c, so in the cut-plane
Ŷe is one half of the y-coordinate of the lowest intersection of ĉ and the half
parabola.

Ŷe=min{t: (1 − t2, 2t) ¥ ĉ, t > 0} (31)

More generally, we can let

Ŷe=min{t: (c(1 − t2), 2ct) ¥ ĉ, t > 0} (32)

Ŷf is the y-coordinate of the first intersection with the parabola divided
by 2c.
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We have defined the random variables in the cut-plane so that if the
probability measure is conformally invariant, then they will have the same
distribution as their counterparts in the half-plane. Rather than compare
the distributions of the random variables Xe, Ye, and Ge with those of X̂e,
Ŷe, and Ĝe, we will compare all these distributions with the SLE8/3 predic-
tions, Eqs. (9), (13), and (23). This tests both the conjecture that the scaling
limit of the SAW is SLE8/3 and the conformal invariance of the SAW. For
the random variables Xf, Yf, and Gf, we do not know their distributions
for SLE8/3. So we will directly compare the distributions of Xf, Yf, and Gf

with those of X̂f, Ŷf, and Ĝf. This tests the conformal invariance of the
SAW.

3. THE SIMULATIONS

In all of our simulations the walks had one million steps. For the half-
plane we ran the pivot algorithm for 10 billion iterations of the Markov
chain. For the cut-plane we ran for 11.4 billion iterations. The simulation
of Ge for d ] 0 in the half-plane was done separately and consisted of 6.8B
iterations. For walks with a million steps only about 5% of the proposed
pivots are accepted. Of course, accepted pivots do not produce independent
walks and for the random variables considered here most accepted pivots
do not even change the value of the random variables. So the number of
effectively independent samples is considerably less than the number of
accepted pivots. Each of the simulations requires about a month on a
1.5 GHz PC. The exact speed of the simulation depends on the choice of
the half-plane vs. cut-plane and how many random variables are simulated.

A walk with N steps is typically of size N3/4, so to study the various
random variables we take c=lN3/4, where l is fairly small. Note that if we
rescaled to make c equal to 1, the lattice spacing would be (lN3/4)−1. We
will refer to this quantity as the ‘‘effective lattice spacing.’’ Note that l is
the ratio of the scale used to define the random variable to the scale of the
walk. So we must take l small to make the effect of the finite length of our
walks negligible. But as l gets smaller, the effective lattice spacing gets
larger. There is a second effect as l gets smaller. For smaller l, the fraction
of the pivots that change the values of the random variables is smaller. So
the statistical errors get larger as l gets smaller. We do not know a priori
what value of l will be optimal, so we compute the distributions of each
random variable for four different values of l in our simulations. The par-
ticular values of l that we use are determined by some experimentation with
much shorter simulation runs. We do not use the same four values of l for
the different random variables.
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In Figs. 1 to 3 we show the distributions of Xe, Ye, and Ge. ( Through-
out this paper we work with the cumulative distributions of our random
variables rather than their densities since any simulation computes cumu-
lative distributions. Computing densities requires taking numerical deriva-
tives of the cumulative distributions, and so the densities would have larger
statistical errors.) The solid curves are the exact distributions for SLE8/3.
The circles are the results of the simulation of the SAW. Figure 4 studies
the probability that the walk passes to the right of a point in the upper half-
plane as a function of the polar angle of the point. The solid curve is
Schramm’s exact result for SLE8/3, and the circles are the results of the
SAW simulation. In all of Figs. 1 to 4, one cannot see any difference
between the SAW simulations and the exact curves for SLE8/3. In Figs. 5
to 9 we plot the same four quantities, except that now we plot the result
of the SAW simulation minus the SLE8/3 functions. The first thing that
should be observed in these figures is the scale of the vertical axis. It is
quite small. In all but one of these figures the total vertical range shown is
0.007 or 0.7%. In Fig. 8 it is 0.008.

In Figs. 5 to 9 several values of l are shown. The nonzero effective
lattice spacing means that we are simulating discrete random variables.
So their distributions will be discontinuous. After subtracting off the con-
tinuous SLE distribution, the jumps will appear in the difference as rapid
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Fig. 5. Half-plane: The distribution of Xe for the SAW minus the distribution of Xe for
SLE8/3. The top curve, with the larger error bars drawn with solid lines, has l=0.01, and the
bottom curve has l=0.05.
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Fig. 6. Half-plane: The distribution of Ye for the SAW minus the distribution of Ye for
SLE8/3. The top curve, with the larger error bars drawn with solid lines, has l=0.002, and the
bottom curve has l=0.005.
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Fig. 7. Half-plane: For d=0, the distribution of Ge for the SAW minus the distribution of
Ge for SLE8/3. The three curves shown are for l=0.2, 0.1, 0.05, in order from top to bottom.
As l decreases the finite length effects decrease, but the error bars and lattice effects grow
larger.
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Fig. 8. Half-plane: For d=0.9, the distribution of Ge for the SAW minus the distribution of
Ge for SLE8/3. The three curves shown are for l=0.2, 0.1, 0.05, in order from top to bottom.
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Fig. 9. Half-plane: The probability that the SAW passes to the right of a point as function
of the polar angle of the point. The corresponding function for SLE8/3 has been subtracted
off. Going from top to bottom on the left half of the figure, the curves are l=0.2, 0.1, 0.05.
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oscillations. As l increases, the effective lattice spacing decreases, and so the
oscillations are usually ‘‘faster’’ but smaller in amplitude. Also, for larger l
a larger fraction of the pivots change the values of the random variables,
and so a larger l typically produces smaller statistical errors. Both of these
effects can be seen in all four of the plots.

However, as l becomes larger, the effect of the finite length of the walk
will begin to be seen. The effect of the finite length is well illustrated by
Fig. 7, which shows the distribution of Ge for d=0. For the largest value
of l shown, l=0.2, the effect of the finite length of the walk is clearly
seen—the curve differs from zero by many times the size of the statistical
errors. This curve is the smoothest of the three curves and has the smallest
statistical error bars. For l=0.1 the finite length effect is greatly reduced,
but is still statistically significant. The l=0.05 curve seems to be the best of
the values of l that were simulated. The maximum difference of the SAW
and SLE8/3 distributions is only about 0.05%. Our simulations included a
fourth value of l which is not shown, l=0.02. For this value the larger
effective lattice spacing and larger statistical errors produce a difference
curve that is rougher and larger than the l=0.05 curve. The behavior in
Fig. 8 for the distribution of Ge for d=0.9 is quite similar to Fig. 7, except
that the nonzero l effects appear to be larger. Note that the vertical scales
in the two figures are not the same.

In Fig. 5 the finite length effect is clearly seen in the l=0.05 curve; for
large negative values of t the deviation of this curve from zero is caused by
the walk being too short. In Fig. 6 there are no obvious finite length
effects; the deviation of the curve from zero appears to be primarily caused
by the nonzero effective lattice spacing. The deviation is of the same order
as the error bars and the oscillations. In Fig. 9 the finite length effects and
nonzero effective lattice spacing effects are similar to those seen in Fig. 7.
Note that the l=0.2 and l=0.1 curves are significantly different from zero
at the right, corresponding to a polar angle of p. This effect is a result of
the nonzero probability that the walk does not reach the semi-circle or that
it crosses it, but ends inside the semi-circle. In both of these cases it is
unclear whether the walk will pass to the right or left of the points on the
semicircle. The algorithm must make some arbitrary choices in these cases.

Figures 10 through 13 show the same quantities as Figs. 5 to 7 and 9,
but for the cut-plane. For the random variable Ĝe (Fig. 12) and the prob-
ability of passing right of a point (Fig. 13), the agreement is again
excellent. In both of these figures the vertical scale is 0.007, the same as in
the corresponding figures for the half-plane. For the random variables X̂e

and Ŷe, Figs. 10 and 11, the agreement is not quite as good, but the devia-
tions from the SLE results are still small. (In these two figures the vertical
scale is two to three times larger than in the other figures.) For these two
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random variables it is harder to do accurate simulations for the following
reason. In the cut-plane, X̂e and Ŷe depend on the intersections of the
random curve with parabolas. It typically takes a longer length of curve to
attain these intersections than for the lines involved in the definition of Xe

and Ye in the half-plane. So in the cut-plane we must use smaller values
of l. For X̂e in the cut-plane, the curves shown use l=0.002 and l=0.005
as compared to l=0.01 and l=0.05 for Xe in the half-plane. Even with
these small values of l, the finite length effects are still quite visible in
Fig. 10. The deviation of the curves from 0 for the most negative values of t
is pronounced. This is the part of the distribution that is particularly sensi-
tive to the need for very long walks to hit the parabola. Of course, small
values of l mean a large effective lattice spacing and large statistical errors.
For Ŷe in the cut-plane, the values of l shown are 0.0005 and 0.001, as
compared to 0.002 and 0.005 for Ye in the half-plane. The finite length
effects in Fig. 11 can be seen in the substantial deviation of the curves from
0 for large t, again a reflection of the need for long walks to reach the
parabola.

The scaling limits for the SAW in the half and cut-planes are
conjectured to be related by the conformal transformation, but there is no
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Fig. 10. Cut-plane: The distribution of X̂e for the SAW minus the distribution of X̂e for
SLE8/3. The top curve, with the larger error bars drawn with solid lines, has l=0.002, and the
bottom curve has l=0.005.
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Fig. 11. Cut-plane: The distribution of Ŷe for the SAW minus the distribution of Ŷe for
SLE8/3. The top curve, with the larger error bars, has l=0.0005, and the bottom curve has
l=0.001.
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Fig. 12. Cut-plane: The distribution of Ĝe for the SAW minus the distribution of Ĝe for
SLE8/3. The curve with the greater deviation from the horizontal axis and the error bars
drawn with dashed lines has l=0.05. The other curve has l=0.02.
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Fig. 13. Cut-plane: The probability that the walk passes to the right of a point as function
of the polar angle of the point. Going from top to bottom on the left half of the figure, the
curves have l=0.1, 0.05, 0.02.

reason that the finite length effects in the two cases should be related.
Indeed, the simulations show they are quite different. For example,
compare the curves for the largest values of l in Figs. 7 and 12. The curve
in Fig. 7 is always positive, looking roughly like the first half of a sine
wave, while the curve in Fig. 12 is both positive and negative.

Finally, we consider the random variables Xf, Yf, and Gf in the half
and cut-planes. We don’t know the exact distributions of these random
variable for SLE8/3, but we can still compare the distributions we get from
the simulations of the SAW in the half-plane with the simulations for the
cut-plane. Recall that X̂f, Ŷf, and Ĝf (the random variables in the cut-
plane) were defined so that they will have the same distribution as their
counterparts in the half-plane if the SAW is conformally invariant. If we
simply plot the distributions themselves, they agree so well that the differ-
ence cannot be seen in the plots. So instead of plotting the distributions, we
plot the distributions minus various reference functions. These reference
functions are quite ad hoc. They are chosen to be simple functions that are
relatively good approximations to the distributions. They are defined as
follows. For Xf and X̂f we use the function

F(t)=1
2 (tanh(1.16t)+1) (33)
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For Yf and Ŷf we use the distribution of Ye for SLE8/3, i.e.,

F(t)=1 − (1+t2)−5/16 (34)

For Gf and Ĝf we use

F(t)=t − 0.12 sin(2pt) − 0.009 sin(4pt) (35)

We emphasize that these are not meant to be highly accurate approxima-
tions of the distributions of Xf, Yf, and Gf. One could find better approx-
imations with more complicated functions. The only purpose of these
functions is to provide a convenient reference with respect to which we can
plot the distributions for the half and cut-planes and compare them.

Figures 14 to 16 compare the distributions of Xf, Yf, and Gf in the
half-plane with their analogs for the cut-plane. Again, the most important
features of these graphs is the small scale of the vertical axis. For Xf and
Gf the difference between the distributions in the half and cut-planes is
very small. For Yf the difference is somewhat larger for large values of t,
but still small. We attribute this greater difference to the larger finite length
effects in the cut-plane. It can take a walk in the cut-plane a long time to
reach the parabola involved in the definition of Ŷf.
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Fig. 14. For the half and cut planes the distribution of Xf for the SAW simulation minus
the reference function (33) is shown. The half-plane simulation used l=0.05, and the cut-
plane used l=0.02. The finite length effects are small for Xf, resulting in excellent agreement
between the two curves.
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Fig. 15. For the half and cut planes the distribution of Yf for the SAW simulation minus the
reference function (34) is shown. The half-plane simulation used l=0.005 and the cut-plane
simulation used l=0.001. Even with these small values of l, the finite length effects produce a
noticeable difference between the curves for large t.
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Fig. 16. For the half and cut planes the distribution of Gf for the SAW simulation minus
the reference function (35) is shown. The half-plane simulation used l=0.1 and the cut-plane
simulation used l=0.05. The half-plane curve has error bars drawn with solid lines, while the
cut-plane uses dashed error bars.
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4. ALGORITHMIC CONSIDERATIONS

The pivot algorithm is used for our simulations. ( This algorithm is
discussed in ref. 9.) The algorithm picks a site at random along the walk,
called the pivot point, and picks a random element of the group of symme-
tries of the lattice about the point. This group element is applied to the part
of the walk after the pivot point. The result is a new nearest neighbor walk,
but it need not be self-avoiding or lie in our domain (the upper half-plane
or the cut-plane). The walk is accepted only if both of these conditions are
meet. Otherwise the proposed walk is rejected and the current walk is
counted as another state in the Markov chain. The Markov chain trivially
satisfies detailed balance with respect to the uniform measure on all self-
avoiding walks with N steps that start at the origin and stay inside our
domain. In the appendix we show that it is irreducible.

The speed of the pivot algorithm is typically measured by considering
the average time needed to produce an accepted pivot. The algorithm may
be implemented (1) so that this time grows with the number of steps, N, as
O(Nq) with q < 1. The exact value of q is not known and probably depends
on details of the implementation, but simulations indicate the implementa-
tion in ref. 1 has q < 0.57 in two dimensions. ( This estimate is based on
simulations of the walk in the full plane, not the half or cut planes.)

There are two main steps in the pivot algorithm, and both would seem
to require a time O(N) per accepted pivot. The first is the test for self
intersections to see if the new walk should be accepted. The second is
actually carrying out the pivot. To test for self-intersections quickly, we
take advantage of the fact that the walk w only takes nearest neighbor
steps. Rather than simply checking if w(i)=w(j), we compute the distance
d=||w(i) − w(j)||1. If d is nonzero then we can conclude not just that
w(i) ] w(j), but also that

w(i −) ] w(j −), if |i − i −|+|j − j −| < d (36)

Thus we can rule out a large number of potential self intersections if d is
large. Since it takes a time O(N) to simply write down a walk with N steps,
the second step of carrying out the pivot would seem to require a time that
is O(N) per accepted pivot. To do better, the key idea is to not carry out
the pivot each time a pivot is accepted. Instead we keep track of which
pivots have been accepted and only carry them out after a certain number
have been accepted. Details of this implementation of the pivot algorithm
may be found in ref. 1.

In the usual implementation of the pivot algorithm one chooses the
pivot point by giving equal probability to all the points on the walk. One
can, however, take the probability of picking the ith site along the walk to
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be p(i), where p(i) is a function whose sum is 1. The only constraint is that
the p(i) must be positive. If one is interested in the distribution of the end-
point of the walk, then every accepted pivot changes this random variable.
For this random variable it does not appear that anything could be gained
by making p(i) non-uniform. However, there is a substantial benefit to
using a non-uniform p(i) for the random variables in this paper. All of our
random variables typically depend only on a short segment of the walk
near the origin. ( The smaller l is, the shorter the segment.) So most
accepted pivots do not produce any change in the random variable. This
suggests that it might be worthwhile to choose pivot locations near the
start of the walk more often than pivot locations far from the start. For the
simulations in this paper we define p(i) as follows

p(i)=˛
8c, if 0 [ i < 1

5 N

4c, if 1
5 N [ i < 2

5 N

2c, if 2
5 N [ i < 3

5 N

c, if 3
5 N [ i < N

(37)

where c= 5
16 N−1 so that the sum of the p(i) is 1. This is a rather ad hoc

choice, but a crude test indicates that for a given number of iterations of
the algorithm, it typically reduces the standard deviation of the random
variable by a factor of two. A systematic study of the effect of p(i) would
be useful.

For each of the six random variables we consider four different values
of l. We also consider four values of l for the probability of passing to the
right of a given point. Thus there are 28 different observables to be com-
puted, and some care is necessary to be sure that the time required for this
part of the simulation does not dominate the simulation. All of these
observables require finding intersections of the walk with a given curve
(a line, parabola, or circle). Searching through the walk one step at a time
for these intersections would be disastrous, since it would require a time
O(N). Such a search is easily avoided. At a given site in the walk we do not
simply check if the next step intersects the curve. Instead we compute the
distance from the site to the curve. The walk must take at least this many
steps before it can intersect the curve, so we can jump ahead this many
steps in the walk before we check again for an intersection.

APPENDIX A. PROOF OF IRREDUCIBILITY

In this appendix we prove that the pivot algorithm is irreducible in the
half-plane and cut-plane that we have been considering. The proof is very
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similar to the proof for the full plane. (9) We show that for any self-avoiding
walk in the half-plane (cut-plane, respectively), there is a sequence of pivot
operations which ‘‘unfold’’ the walk into a straight line and such that each
walk produced in this unfolding process is self-avoiding and remains in the
half-plane (cut-plane, respectively).

We first consider the half-plane. The restriction is that except for the
starting point of the walk at the origin, the walk must remain strictly above
the horizontal axis. We will show that the number of turns in the walk can
be decreased by one. We denote the sites in the walk by w(i) where
i=0, 1,..., N. We will say there is a turn at w(i) if w(i − 1), w(i) and
w(i+1) are not co-linear.

We will consider cases based on the direction of the last step of the
walk. If it is to the right, i.e., w(N)=w(N − 1)+(1, 0) we proceeds as
follows. Let l be the largest integer such that the line y − x=l contains a
site on the walk. So the walk is entirely below or on this line. Let i be the
largest integer such that w(i) is on this line. Since the last step of the walk
is to the right, w(N) is not on this line. So i < N. Since the first step of the
walk in the half-plane must be up, i cannot be 0. We take w(i) as the pivot
point and reflect the portion of the walk from w(i) to w(N) in the line
y − x=l. The reflected portion of the walk lies entirely above the line, so
the reflection does not produce self-intersections. Furthermore, since the
walk was on or below the line, the reflection can only increase the y coor-
dinates of points on the walk. So the new walk is still in the upper half
plane. The walk before this reflection has a turn at w(i) and the reflected
walk does not. The reflection does not add any turns to the walk, so the
total number of turns decreases by one. If the final step of the walk is to
the left, i.e., w(N)=w(N − 1) − (1, 0), we use an analogous procedure with
lines y+x=l to reduce the number of turns in the walk.

Now suppose that the final step of the walk is either up or down, i.e.,
w(N)=w(N − 1) ± (0, 1). Consider the vertical line which contains this
last step. First suppose that the walk lies entirely to the right of or on this
vertical line. Let i < N be the largest integer such that there is a turn at
w(i). (Of course, if there are no turns the walk is a straight line and we
are done.) The walk is a straight segment from w(i) to w(N) which lies
on the vertical line. We take w(i) as the pivot point and perform a rota-
tion of 90 degrees (− 90, respectively) if the last step of the walk is up
(down, respectively). This rotates the segment from w(i) to w(N) to the
left of the vertical line and removes the turn at w(i). No new turns are
added to the walk, so the total number of turns decreases by one. If the
walk likes entirely to the right or on the vertical line containing the last
step, an analogous argument shows the number of turns can be reduced
by one.
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Now suppose that the walk contains sites on both sides of the vertical
line which contains the last step of the walk. Let d be the horizontal width
of the walk:

d=max{x: (x, y)=w(i), for some i, y}

− min{x: (x, y)=w(i), for some i, y} (38)

We will show that d can be increased. Let l be the smallest integer such that
the vertical line x=l contains sites in the walk. So the walk lies on or to
the right of this line. Note that w(N) is not on this line. Let i < N be the
largest integer such that w(i) is on this line. We take w(i) as the pivot point
and reflect the walk from w(i) to w(N) in the line x=l. This increases the
width of the walk. ( The argument is the same as that given in ref. 9.) The
reflection does not change the y-coordinate of points on the walk, so the
new walk is still in the upper half-plane. Note that in the new walk the last
step is in the same direction as before, i.e., either up or down. So we can
repeat this procedure to increase d until we obtain a walk which lies
entirely on or to one side of the vertical line containing the final step. When
we reach such a walk we apply the procedure of the proceeding paragraph
to reduce the number of turns by one. This completes the proof for the case
of the half-plane.

Now consider the cut-plane. The restriction now is that the walk
cannot contain sites of the form (x, 0) with x \ 0, except for the starting
point at the origin. We again consider cases based on the direction of the
last step of the walk. If it is to the right, we proceed as in the half-plane
algorithm. Note that the line involved, y − x=l, must have l \ 0 since the
walk starts at the origin. (In fact l must be at least 1, but we do not need
this.) The reflected portion of the walk will lie above this line while the cut,
the non-negative real axis, lies below it. So the reflection produces a walk
that lies in the cut-plane.

If the last step of the walk is to the left, a different procedure is needed
to avoid producing a walk that intersects the cut. Consider the lines
x − y=l and x+y=l. They intersect at (l, 0) and divide the plane into
four quadrants which we will describe as being left, right, above and below
the point (l, 0). We take l to be the smallest integer such that the sites on
the walk lie in the quadrant to the left of (l, 0) or on the lines. ( l is neces-
sarily positive.) We then let i be the largest integer such that w(i) is on one
of the two lines. (It is not N since the last step of the walk is to the left.)
Note that w(i) cannot be (l, 0). We take w(i) as the pivot point and reflect
the walk from w(i) to w(N) in the line containing w(i). The reflected
portion of the walk will lie either in the quadrant above or below (l, 0) and
so cannot intersect the cut.
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If the last step of the walk goes up or down we use the algorithm for
the half-plane. There is a subtle point here. Recall than when the walk has
points on both sides of the vertical line containing the last step, we chose l
so that the walk is to the right of or on the vertical line x=l. For the half
plane we could have chosen it so that ‘‘right’’ is replace by ‘‘left.’’ For the
cut-plane this choice could result in a reflected walk that intersects the cut.
To see that our choice does not produce a walk that intersects the cut, we
observe that since the walk starts at the origin, l must be negative. The
reflected portion of the walk will lie on or to the left of the line x=l, and
so will not intersect the cut. This completes the proof for the cut-plane.
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